Infrared Micro-Particle Image Velocimetry Measurements and Predictions of Flow Distribution in a Microchannel Heat Sink
نویسندگان
چکیده
The flow distribution in a silicon microchannel heat sink was studied using Infrared MicroParticle Image Velocimetry (IR PIV). The microchannel test piece consisted of seventy-six 110 m wide 371 m deep channels etched into a silicon substrate. Inlet and outlet manifolds, also etched into the substrate, were fed by 1.4 mm inner-diameter tubing ports. An image processing algorithm was developed that significantly improves the quality of IR PIV recordings in low signal-to-noise ratio environments. A general expression for the PIV measurement depth is presented, which is valid for PIV images that have undergone a threshold image processing operation. Experiments were performed at two different flow rates: 10 ml/min (Re = 10.2) and 100 ml/min (Re = 102). Little flow maldistribution was observed at the lower flow rate. However, significant flow maldistribution was observed at Re = 102, with the channels near the centerline having an approximately 30% greater mass flux than the channels near the lateral edges of the heat sink. Numerical simulations carried out for flow in the microchannel heat sink agreed very well with the experimental measurements, validating the use of a computational approach for studying the effect of manifold design on flow distribution in microchannel heat sinks.
منابع مشابه
Experimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملNumerical investigating the gas slip flow in the microchannel heat sink using different materials
In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...
متن کاملHeat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis
The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کاملSubcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models
Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...
متن کامل